

MH 185 Hall-effect sensor is a temperature stable, stress-resistant, micro-power latch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

The MH 185 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and a short circuit protected open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output latches on, and only switches off when a north polarity field of sufficient strength is present.

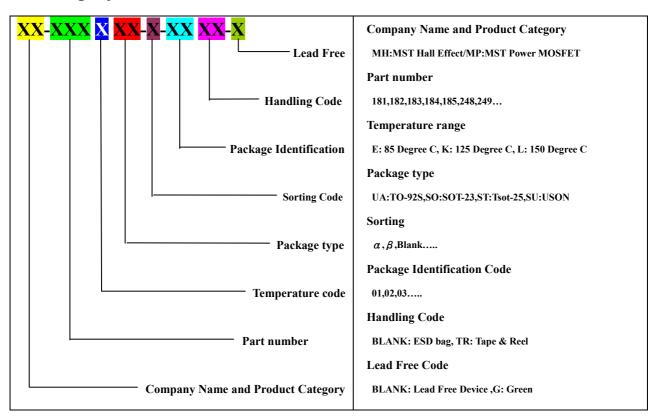
The MH 185 is rated for operation between the ambient temperatures –40°C and 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultramini SIP for through-hole mounting.

The package type is in a lead (Pb)-free version was verified by third party Lab.

Features and Benefits

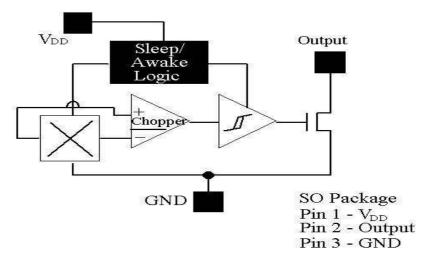
- Micro-Power Latch function down to 8uA (Avg) supply current
- CMOS Hall IC Technology
- Solid-State Reliability
- Bipolar Output CMOS latch
- Operation down to 2.5V
- High Sensitivity Latch for direct "two reed switch application" replacement.
- Micro-power consumption for battery-powered applications
- 100% tested at 125 °C for K spec/ Wide range of working Temperature
- RoHS is qualified by 3 party lab

Applications


- Solid state high sensitivity latch function
- High sensitivity, latch function for "2 reed switch" replacement in low duty cycle applications.
- Revolution counter in battery-powered applications
- Water Meter RPM detector

MH 185

CMOS Micro-power Latch


Ordering Information

Part No.	Temperature Suffix	Package Type	Package Identification
185	K (-40°C to + 125°C)	UA (TO-92S)	01
	K (-40°C to + 125°C)	SO (SOT-23)	05

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100Ω resistor in series with V_{DD} is recommended.

Absolute Maximum Ratings

Supply Voltage (Operating), V _{DD}	5V		
Supply Current (Fault), I _{DD}	1mA		
Output Voltage, V _{OUT}	5V		
Output Current (Fault), I _{OUT}	5mA		
Operating Temperature Range, T _A	-40°C to +125°C		
Storage Temperature Range, T _S	-55°C to +150°C		

MH-185 Electrical Specifications

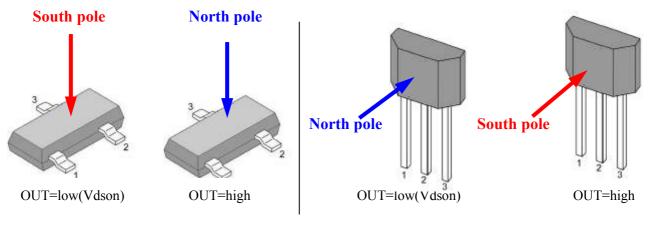
DC operating parameters: $T_A = 25^{\circ}C$, $V_{DD}=3V_{DC}$ (unless otherwise specified).

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Supply Voltage	V_{DD}	Operating	2.5		5	V
Supply Current	I_{DD}	Average		8		μΑ
Output Current	I _{OUT}				1.0	mA
Saturation Voltage	V_{SAT}	$I_{OUT} = 1 \text{mA}$			0.4	V
Awake mode	T_{AW}	Operating		175		us
Sleeping mode	T_{SL}	Operating			70	ms

Magnetic Specifications

DC operating parameters: $T_A = 25^{\circ}C$, $V_{DD}=3V_{DC}$ (unless otherwise specified).

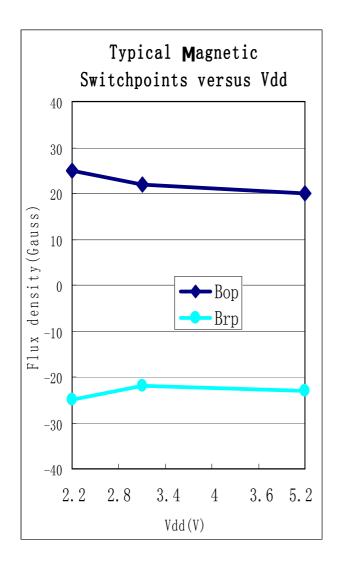
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Operating Point	B _{OP}		-6.0	-3.5	-0.5	mT
Release Point	B_{RP}		+0.5	+3.5	+6.0	mT
Hysteresis	B_{HYS}			7.0		mT

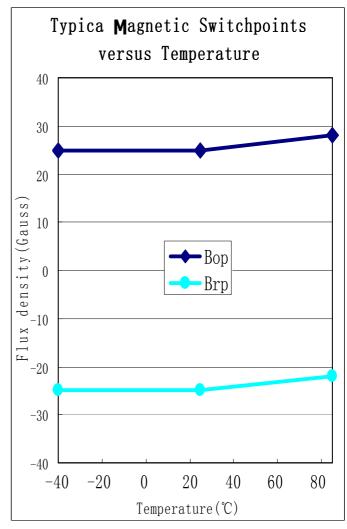

Note: 1 mT = 10 Gauss.

Output Behaviour versus Magnetic Pole

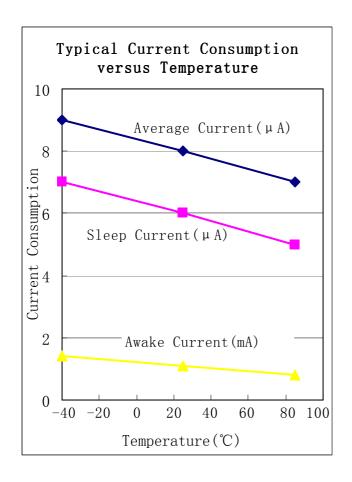
DC Operating Parameters Ta = -40 to 125° C, Vdd = 2.5 to 5V (unless otherwise specified)

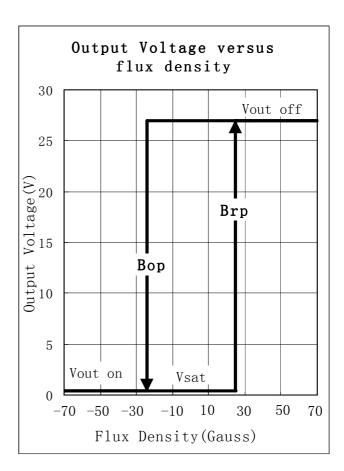
Parameter	Test condition(SO)	OUT(SO)	Test condition(UA)	OUT(UA)
South pole	B>Bop	low	B <brp< td=""><td>high</td></brp<>	high
North pole	B <brp< td=""><td>high</td><td>B>Bop</td><td>Low</td></brp<>	high	B>Bop	Low

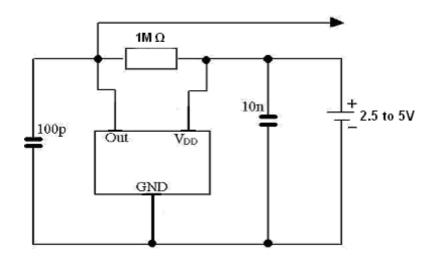


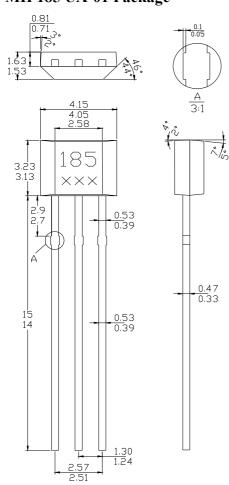


SO package


UA package


Performance Graphs



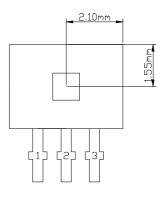


Typical Application

Package Physical Characteristics and sensor location MH 185 UA-01 Package

NOTES:

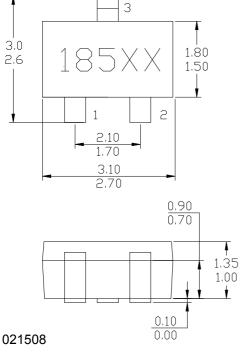
- 1).Controlling dimension: mm
- 2).Leads must be free of flash and plating voids
- Do not bend leads within 1 mm of lead to package interface.
- 4).PINOUT:


Pin 1 VDD

Pin 2 GND

Pin 3 Output

Active Area Depth



Sensor Location

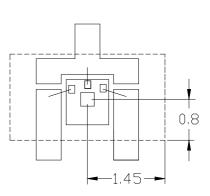
MH 185 SO-05 Package

(Top View)

0.50 0.35

NOTES:

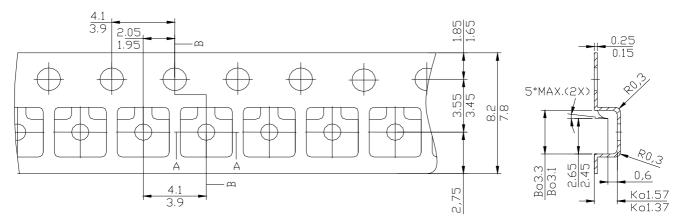
1. PINOUT (See Top View at left:)

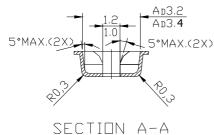

Pin 1 VDD

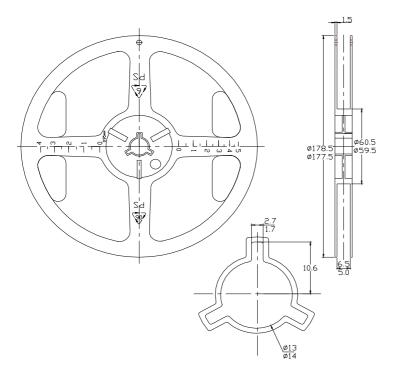
Pin 2 Output

Pin 3 GND

- 2. Controlling dimension: mm;
- Lead thickness after solder plating will be 0.254mm maximum.


SOT-23 Hall Plate / Chip Location (Bottom view)




MH 185

CMOS Micro-power Latch

Sot 23 Tape on Reel dimension

NOTES:

- 1. Material: Conductive polystyrene;
- 2. DIM in mm;
- 10 sprocket hole pitch cumulative tolerance ±0.2;
- 4. Camber not to exceed 1mm in 100mm;
- Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole;
- 6. (S.R. OHM/SQ) Means surface