

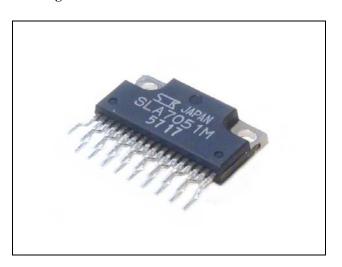
October 2005

■General Description

Combining low-power CMOS logic with high-current, high-voltage power FET outputs, the Series SLA705xM translator/driver provides complete control and drive for a two-phase unipolar stepper motor with internal fixed off time, pulse-width modulation (PWM) control of the output current in a power multi-chip module (PMCMTM). The CMOS logic section provides the sequencing logic, direction,

full/half-step control, synchronous/asynchronous PWM operation, and a "sleep" function. The minimum CLOCK input is an ideal fit for applications where a complex μP is unavailable or overburdened. TTL or LSTTL may require the use of appropriate pull-up resistors to ensure a proper input-logic high. For PWM current control, the maximum output current is determined by the user's selection of a reference voltage and sensing resistor. The NMOS outputs are capable of sinking up to 1,2 or 3 A and withstanding 46 V in the off state. Ground-clamp and flyback diodes provide protection against inductive transients. Special power-up sequencing is not required. Full-step (2 phase) and half-step operation are externally selectable. Two-phase drive energizes two adiacent phases in each detent

Full-step (2 phase) and half-step operation are externally selectable. Two-phase drive energizes two adjacent phases in each detent position (AB-BC-CD-DA). This sequence mode offers an improved torquespeed product, greater detent torque, and is less susceptable to motor resonance. Half-step excitation alternates between the one-phase and two-phase modes (A-AB-B-BC-C-CD D-DA), providing an eight-step sequence.

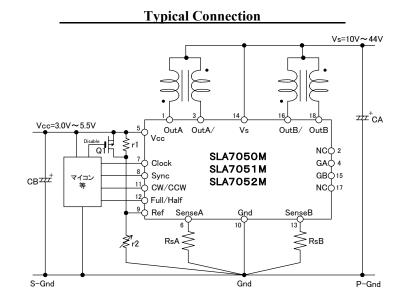

■Applications

- \bullet PPC
- Printer
- OA Equipment

■Features

- To 3A Output Rating
- •Internal Sequencer for Full or Half-Step Operation
- ●PWM Constant-Current Motor Drive
- •Cost-Effective, Multi-Chip Solution
- •100 V, Avalanche-Rated NMOS
- •Low rDS(on) NMOS Outputs (300 milli-ohms typical)
- •Advanced, Improved Body Diodes
- •Half-Step and Full-Step Unipolar Drive
- •Inputs Compatible with 3.3 V or 5 V Control Signals
- •Sleep Mode
- Internal Clamp Diodes

■Package----SLA18Pin


■Key Specifications

Motor Supply Voltage (VM): 44V max
Load Supply Voltage (Vs): 10V~44V
Logic Supply Voltage (Vcc): 3V~5.5V

•Output Current (Io): 1A(SLA7050M)

2A(SLA7051M) 3A(SLA7052M)

•Output Maximum Voltage (V_{DSS}): 100V min

October 2005

Scope

The present specifications shall apply to Sanken 2 Phase Stepper Motor Driver IC, SLA705xM Series. The present specifications shall apply to SLA 705xM Series which is performed RoHS instructions.

Outline

Туре	Hybrid integrated circuit
Structure	Plastic molded (transfer mold)
Applications	To drive a 2 phase stepper motor. (Full or Half Step. PWM Current Control.)

Absolute maximum ratings

Characteristic	Symbol	Ratings	Unit	Remarks
Motor Supply Voltage	VM	46	V	
Load Supply Voltage	Vs	46	V	
Logic Supply Voltage	Vec	7	V	
		1.0		SLA7050M
Output Current	Io	2.0	A	SLA7051M
		3.0		SLA7052M
Logic Input Voltage	Vin	$-0.3 \sim Vec + 0.3$	V	
REF Input Voltage	VREF	$-0.3 \sim Vec + 0.3$	V	
Sense Voltage	VRs	-2~2	V	Tw<1µS doesn't contain it.
Total Device Dissipation	D _{rs}	4	W	at Ta=25℃
Total Bevice Bissipation	P_{D}	20	W	at Tc=25℃
Junction Temperature	Tj	150	$^{\circ}$ C	
Operating Temperature Range	Ta	$-20 \sim 85$	$^{\circ}$ C	
Storage Temperature Range	Tstg	$-30\sim150$	$^{\circ}\!\mathbb{C}$	

October 2005

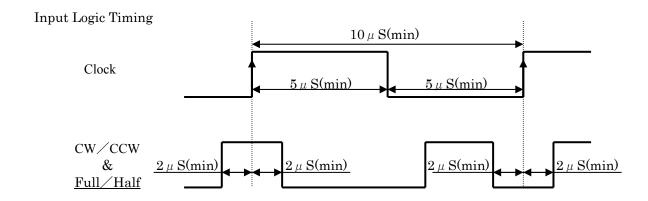
Electrical characteristics

Recommendable Operating Range

Characteristic	Symbol	Ratings		Unit	Remarks	
Characteristic	Symbol	MIN	MAX	Onit	ivemarks	
Motor Supply Voltage	VM		44	V		
Load Supply Voltage	Vs	10	44	V		
Logic Supply Voltage	Vcc	3.0	5.5	V	Please adjust the Vcc surge voltage to 0.5V or less.	
REF Input Voltage	VREF	0.1	1.0	V	The control current accuracy decreases in 0.1V or less.	
Package Temperature	Тс		100	$^{\circ}$ C	10Pin temperature (at No Fin)	

Electrical Characteristic (Ta=25°C,Vs=24V,Vcc=5V Unless Otherwise Noted)

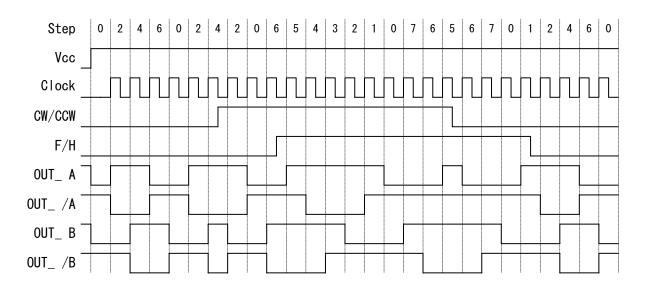
Characteristic	Symbol	Limits			Unit	Test Condition
Characteristic	Symbol	MIN	TYP	MAX	Offic	lest Condition
Load Supply Current	Is			15	mA	Regularity
Load Supply Current	Iss			100	μ A	at SLEEP operates
Logic Supply Current	Iœ			3	mA	
Output Maximum Voltage	VDSS	100			V	Vs=44V IDSS=1mA
FET On-State Resistance	RDS(on)		0.3	0.5	Ω	ID=1A
FET Diode Forward Voltage	VSD		0.8	1.1	V	IsD=1A
Maximum Clock Frequency	Felock			100	kHz	
Logic Input Voltage	VIL			Vcc×0.25	V	
Logic Input Voltage	VIH	V∞×0.75			V	
Logic Input Current	IIL		±1		μA	
Toge input current	IIH		±1		μA	
REF Input Voltage	VREF	0		1.5	V	Stationary current control
Input totage	VREFS	2.0		Vœ	V	Output OFF(Sleep)
REF Input Current	IREF		±10		$\mu \mathbf{A}$	
Sense Voltage	VRs		$V_{ m REF}$		V	


October 2005

Electrical Characteristic (Ta=25°C,Vs=24V,Vcc=5V Unless Otherwise Noted)

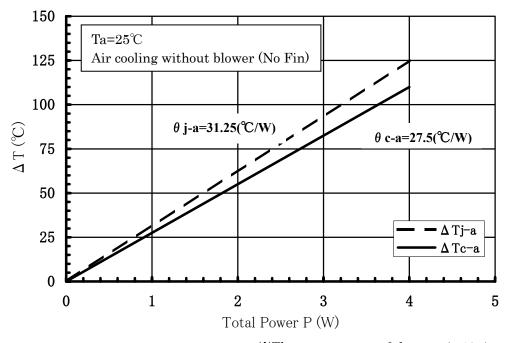
Characteristic	Crashal	Limits			T Took	That Care dition
Characteristic	Symbol	MIN	TYP	MAX	Unit	Test Condition
PWM OFF Time	TOFF		12		$\mu { m S}$	
PWM Minimum ON Time	TON(min)		5		μS	
Sleep-Enable return time	TSE	100			μS	VREF : 2.0→1.5 ^V Io : 1.5A
Switching Time	TONC		2.5		μS	Clock→Out
	TOFFC		2.0		μS	Clock→Out

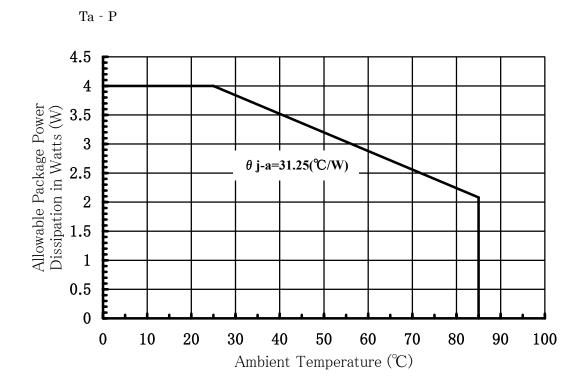
Truth table


Pin Function	Low level	High level
CW/CCW	Forward(CW)	Reverse(CCW)
Full/Half	Full Step	Half Step
REF	Enable	Output disable(Sleep)
Sync	Non synchronous PWM	Synchronous PWM
Clock	Positive Edge	

October 2005

Timing chart

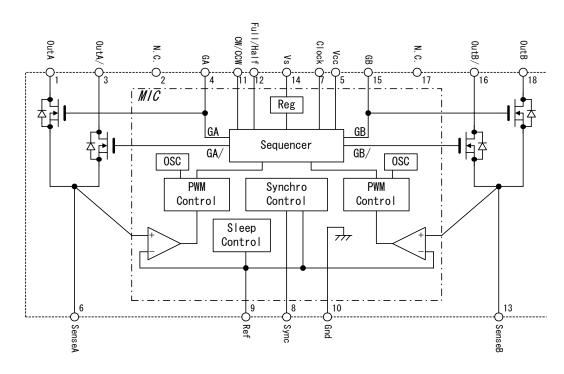

- This timing chart is a voltage mark.
- PWM signal for current control is not superimposed on this timing chart.



October 2005

Heat design data

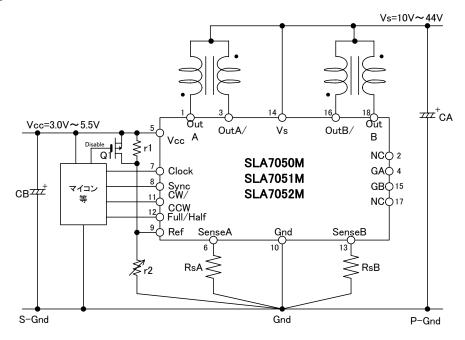
Total Power – Δ T indegc



October 2005

Block diagram (Connection diagram)

Pin arrangement, Functional table


Pin Number	Symbol	Function
1	OutA	Phase A Output
2	N.C.	No Contact
3	OutA/	Phase A/ Output
4	GA**	Phase A Gate
5	Vcc	Logic supply
6	SenseA	Phase A current sense
7	Clock	Step clock
8	Sync	Synchronous PWM control
9	Ref	Current reference & Output disable
10	GND	GND
11	CW/CCW	Forward reverse control
12	Full/Half	Full step half step control
13	SenseB	Phase B current sense
14	Vs	Load supply
15	GB**	Phase B Gate
16	OutB/	Phase B/ Output
17	N.C.	No Contact
18	OutB	Phase B Output

%The gating signal of MOS FET outputs, and use 4pin and 15pin by the unwiring, please.

October 2005

Example application circuit

Reference constant $Rs=0.1\sim 2\Omega (Loss \ attention \ P=Io^2\times Rs)$

 $FIo^2 \times Rs$) CA=100 μ F/50V

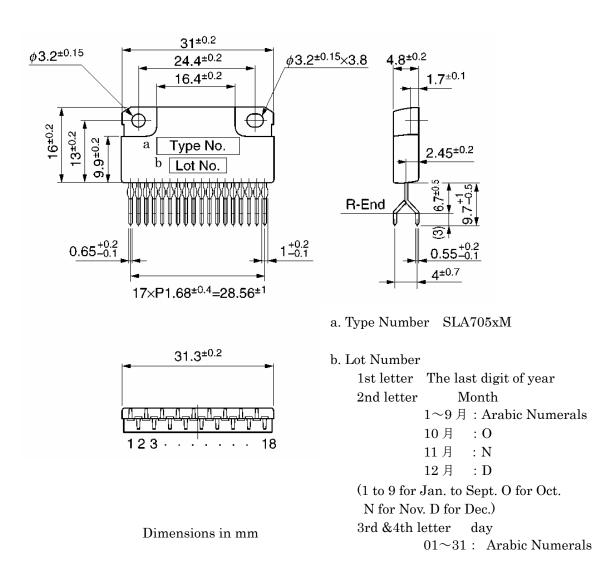
 $R1=10k\Omega$

CB=10 μ F/10V Q1:

 $R2=5.1k\Omega(VR)$

☆Be careful of especially the noise on Vcc line.

If the noise on Vcc line exceeds 0.5V, a product may incorrect-operate.


- ☆When you do not use Logic inputs (CW/CCW and F/H, Sync), please be sure to connect with Vcc or GND.
- ☆To minimize the effect of system ground I·R drops on the logic and reference input signals, Ground pin should have a low-impedance return to system groud.
- ☆2pin,4pin,15pin and 17pin are No Contact.

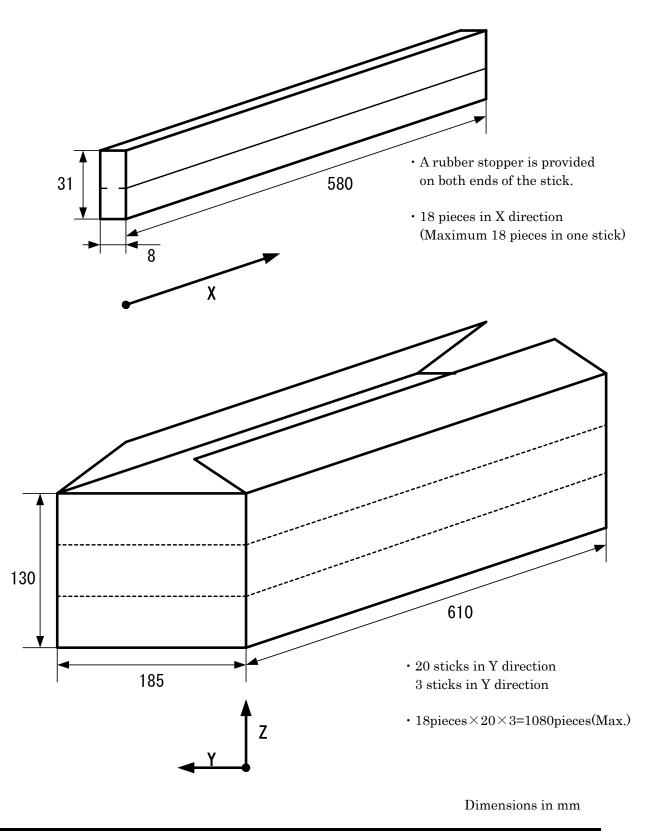
October 2005

Package information s

Package type and physical dimensions

Appearance

The body shall be clean and shall not bear any stain, rust or flaw.


Marking

The type number and lot number shall be clearly marked in white.

October 2005

Packing specifications

Sanken Electric Co.,Ltd.

October 2005

Cautions and warnings

The calculation of control current

SLA705xM Series control current Io is calculated as follow.

Io=VREF/Rs

REF Voltage range is 0.1V~1.0V

*When the REF<0.1V, the accuracy of control current is reduce.

Moreover, if REF voltage is set up more than 2.0V, all outputs will be in OFF state.

Installation to a heat sink

1)Recommended Clamping Torque (to External Heat sink) 0.490~0.822N·m

2)Recommended Silicone

G746 {SHIN-ETSU CHEMICAL} YG6260 {GE TOSHIBA SILICONES}

SC102 {DOW CORNING TORAY SILICONE}

Notice

This driver has C-MOS inputs. Please notice as following contents.

- When static electricity is a problem, care should be taken to properly control the room humidity. This is particularly true in the winter when static electricity is most troublesome.
- Care should be taken with device leads and with assembly sequencing to avoid applying static charges to IC leads. PC board pins should be shorted together to keep them at the same potential to avoid this kind of trouble.

