

Low-Dropout, Constant-Current White LED Bias Supply

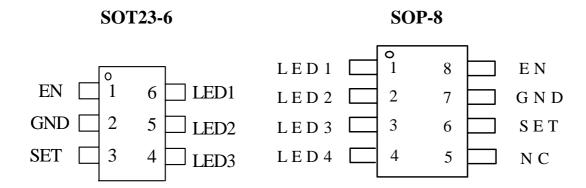
FEATURES

- Low 200mV Dropout at 9mA
- Up to 150mA LED Bias Current
- 0.3% LED Current Matching
- Simple LED Brightness Control
- Low 40uA Supply Current
- Low 0.05uA Shutdown Current
- 2.5V to 5.5V Supply Voltage Range
- SOP-8 and SOT23-6 Package
- Output channel:
 SOP-8 package for four channel
 SOT23-6 package for three channel

Applications

- Cellular Phones
- Portable Communication Devices
- Handheld Electronics
- Digital Cameras
- PDAs
- LED/Display Back Light Driver
- LEDs for Camera Flash

PART NUMBER EXAMPLES


PART NO.	PACKAGE
T6311A-D	SOP-8
T6311A-X	SOT23-6

GRNERAL DESCRIPTION

The T6311A low-dropout bias supply for white LEDs is a high-performance alternative to the simple ballast resistors used in conventional white LED designs. The T6311A uses a single resistor to set the bias current for four LEDs, which are matched to 0.3%. The T6311A consumes only 40uA of supply current when enabled and 0.05uA when disabled. The T6311A advantages over ballast resistors include significantly better LED to LED bias matching, much lower bias variation with supply voltage variation, significantly dropout voltage, and applications, significantly improved efficiency. The T6311A requires a 200mV dropout at a 9mA load on each output to match the LED brightness. The T6311A is available in SOP-8 and SOT23-6 package.

PIN ARRANGEMENT(Top view)

PIN DESCRIPTION

SYMBO	Pin no.		DESCRIPTION		
L	SOP-8	SOT23-6			
EN	8	1	Enable Input/Power Input. Drive high (> 2.5V) to enable; drive low (< 2.2V) to disable. When disabled, SET, LED1, LED2, LED3 and LED4 are high impedance. When enabled, EN is the power input for the T6311A.		
GND	7	2	Ground		
SET	SET 6 3		Bias Current Set Input. The current flowing into SET sets the bias current into each LED by ILED_= 240 x ISET. VSET is internally biased to 1.2V. SET is high impedance when EN is low.		
NC	5	-	No connection.		
LED4	4	-	LED 4 Cathode Connection. Current flowing into LED4 is 240 times the current flowing into SET. LED4 is high impedance when EN is low.		
LED3	3	4	LED 3 Cathode Connection. Current flowing into LED3 is 240 times the current flowing into SET. LED3 is high impedance when EN is low.		
LED2	2	5	LED 2 Cathode Connection. Current flowing into LED2 is 240 times the current flowing into SET. LED2 is high impedance when EN is low.		
LED1 1 6		6	LED 1 Cathode Connection. Current flowing into LED1 is 240 times the current flowing into SET. LED1 is high impedance when EN is low.		

BLOCK DIAGRAM

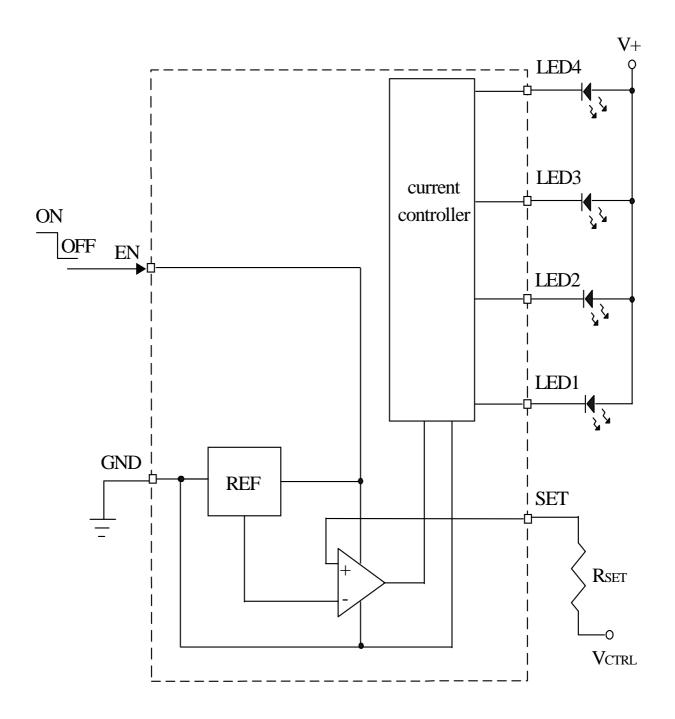


Fig. 1

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to GND	V _{IN}	-0.3 to 6	V
Operating Temperature Rang	T _A	-40 to +85	°C
Maximum Soldering Temperature (at leads, 10 sec)	T_{LEAD}	300	°C
Storage Temperature Rang	T_{S}	-65 to +150	°C
Continuous Power Dissipation ($T_A = +70^{\circ}C$)		1	W

Electrical Characteristics

(TA = -40 to 85°C unless otherwise noted. Typical values are at TA =25°C,

VEN =3.3V, VLED1 = VLED2= VLED3= VLED4= 1V) (Note 1)

Symbol	Description	Conditions			Тур.	Max	Unit
VEN	Operating voltage range	EN is power s	2.5		5.5	V	
Iset	SET input current range		5		260	uA	
	SET to LED current ratio	ILED / ISET, ISE	et=42uA	220	240	260	A/A
VSET	SET bias voltage	Iset=42uA		1.08	1.2	1.32	V
	SET leakage current in	EN=GND,	T_{A} = -40 to +25°C		0.01	1	uA
	Shutdown	V _{SET} =3.3V	T_{A} = -40 to +85°C			5	uA
	LED to LED current matching	Iset=42uA			0.3		%
ILED	Maximum LED sink current	Each LED			100	150	mA
		Iset=20uA (Note 2)			100	180	mV
LE	LED dropout voltage	Iset=40uA (Note 3)			200	360	mV
		Iset=80uA (Note 3)			230	410	mV
	LED leakage current in shutdown	VLED1=VLED2 EN=GND, TA		0.01	1	uA	
V _{IH}	Input high voltage	VEN >VIH for	2.5			V	
VIL	Input low voltage	VEN <vil for<="" td=""><td></td><td></td><td>2.2</td><td>V</td></vil>			2.2	V	
IEN	EN intput bias current	$V_{EN} = 2.50V$ to 5.5V, EN is power supply input			40	100	uA
		$V_{EN}=0.4V$,		0.05	1	uA	

Note 1: Limits are 100% production tested at $TA = +25^{\circ}C$. Limits over the operating temperature range are guaranteed through correlation using statistical quality control (SQC) methods.

Note 2: Dropout Voltage is defined as the LED to GND voltage at which current sink into LED drops 20% from the value at VLED = 1V.

Note 3: Dropout Voltage is defined as the LED to GND voltage at which current sink into LED drops 10% from the value at VLED = 1V.

Typical Operating Characteristics

(VEN=+3.3V, VCTRL= 3.3V, RSET=24.9k ohm, V+=3.3V, TA=+25 °C, unless otherwise noted.)(circuit of Fig. 1)

TBD

Functional Description

The T6311A provides constant current bias supply for white LED designs. The T6311A uses a single resistor to set the bias current for up to three LEDs. LED bias currents are matched to 0.3% by the T6311A current matching architecture (Fig. 1). Supply current (IEN) is a low 40uA in normal operation and 0.05uA when disabled. The T6311A offers several advantages over using ballast resistors, such as improved LED to LED brightness matching, lower bias variation with supply voltage changes, significantly lower dropout voltage. and in some applications, significantly efficiency. improved T6311A achieves a 200mV dropout with a 9mA load on each output. For circuits requiring only one or two LEDs, leave unused LED outputs unconnected.

Enable Input

EN powers the input of the T6311A. Drive EN high (> 2.5V) to enable the device; drive EN low (< 2.2V) to disable the device. When driven high, EN draws 40μ A to power the IC. Driving EN low forces LED1, LED2, LED3, LED4 and SET into a high-impedance state.

Setting the Output Current

SET controls the LED bias current. Current flowing into LED1, LED2, LED3 and LED4 is 240 times greater than the current flowing into SET. Set the output current as follows:

$$ILED = 240 ((VCTRL - VSET) / RSET)$$

where $V_{\text{SET}} = 1.2V$, V_{CTRL} is an external voltage between 1.8V and 5.5V, and Rset is the resistor connected between V_{CTRL} and SET (Fig. 1).

Applications Information

Very Low-Cost, High-Efficiency Solution (Fig. 2). A battery (single Li+ or three NiMH cells) powers the LEDs directly. This is the least expensive and most efficient architecture. Due to the high forward voltage of white LEDs (3.3V), the LED brightness may dim slightly at the end of battery life. The T6311A current regulating architecture and low dropout greatly minimize this effect compared to using simple ballast resistors. The enable function of the T6311A turns on and off the LEDs. An existing low-dropout regulator is used as VCTRL.

Brightness Adjustment Using a DAC (Fig. 3). A DAC is used as VCTRL such that the LED brightness may be dynamically adjusted to eliminate factory calibration. A battery (single Li+ or three NiMH cells) or a regulated power source drives the LEDs.

TYPICAL APPLICATION CIRCUITS

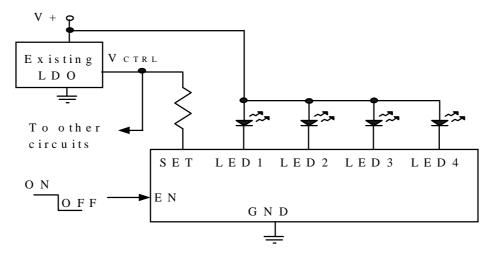


Fig. 2 Very low-cost, high-efficiency solution

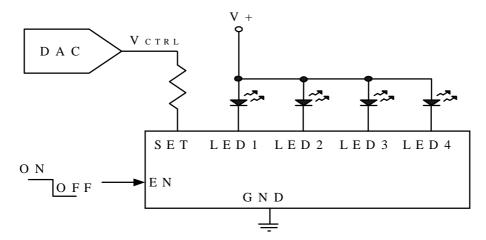
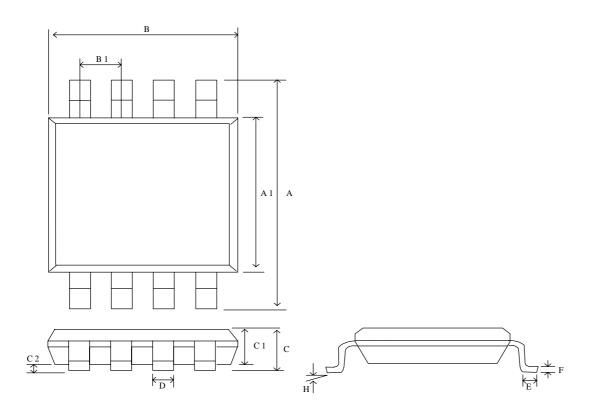
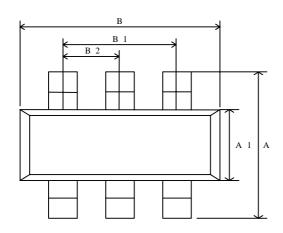
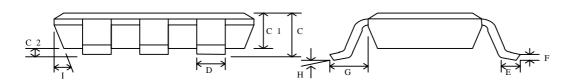



Fig. 3 Brightness adjust using DAC


PACKAGE DIMENSIONS 8-LEAD SOP



Symbol	Dimension in mm			Dimension in inch			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
A	5.70	6.00	6.30	0.224	0.236	0.248	
A1	3.75	3.95	4.10	0.148	0.156	0.164	
В	-	-	5.13	-	-	0.202	
B1	ı	1.27	-	-	0.050	-	
С	-	-	1.80	-	-	0.071	
C1	1.35	1.55	1.75	0.052	0.061	0.069	
C2	0.10	ı	0.25	0.001	-	0.004	
D	0.31	0.41	0.51	0.012	0.016	0.020	
Е	0.30	0.50	0.70	0.012	0.020	0.028	
F	0.10	0.15	0.25	0.004	0.006	0.010	
Н		0~8°		0~8°			

PACKAGE DIMENSIONS SOT23-6

Symbol	Dimension in mm			Dimension in inch			
	Min.	Тур.	Max.	Min.	Typ.	Max.	
A	2.60	2.80	3.00	0.102	0.110	0.118	
A1	1.40	1.575	1.60	0.055	0.062	0.063	
В	2.70	2.85	3.00	0.106	0.112	0.118	
B1		1.90(BSC)			0.075(BSC)		
B2		0.95(BSC)			0.037(BSC)		
С	0.95	1.20	1.45	0.037	0.047	0.057	
C1	0.90	1.10	1.30	0.035	0.043	0.051	
C2	0	0.075	0.150	0	0.003	0.06	
D		0.40			0.015		
Е	0.30	0.45	0.60	0.012	0.018	0.023	
F	0.08	0.15	0.22	0.003	0.006	0.009	
G		0.60(REF)					
Н		0~8°		0~8°			
I		5~15°		5~15°			