

Ultra Fast Avalanche Sinterglass Diode

Features

- · Glass passivated junction
- · Hermetically sealed package
- · Very low switching losses
- Low reverse current
- · High reverse voltage

Applications

Switched mode power supplies High-frequency inverter circuits

Case: SOD-57 Sintered glass case

Terminals: Plated axial leads, solderable per

MIL-STD-750, Method 2026

949539

Polarity: Color band denotes cathode end

Mounting Position: Any **Weight:** approx. 369 mg

Parts Table

Part	Type differentiation	Package
BYV26A	V _R = 200 V; I _{FAV} = 1 A	SOD-57
BYV26B	V _R = 400 V; I _{FAV} = 1 A	SOD-57
BYV26C	V _R = 600 V; I _{FAV} = 1 A	SOD-57
BYV26D	V _R = 800 V; I _{FAV} = 1 A	SOD-57
BYV26E	V _R = 1000 V; I _{FAV} = 1 A	SOD-57

Absolute Maximum Ratings

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Part	Symbol	Value	Unit
Reverse voltage = Repetitive peak reverse voltage	see electrical characteristics	BYV26A	$V_R = V_{RRM}$	200	V
		BYV26B	$V_R = V_{RRM}$	400	V
		BYV26C	$V_R = V_{RRM}$	600	V
		BYV26D	$V_R = V_{RRM}$	800	V
		BYV26E	$V_R = V_{RRM}$	1000	V
Peak forward surge current	t _p = 10 ms, half sinewave		I _{FSM}	30	Α
Average forward current			I _{FAV}	1	Α
Non repetitive reverse avalanche energy	I _{(BR)R} = 1 A, inductive load		E _R	10	mJ
Junction and storage temperature range			$T_j = T_{stg}$	- 55 to + 175	°C

1

BYV26

Vishay Semiconductors

Maximum Thermal Resistance

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Value	Unit
Junction ambient	I = 10 mm, T _L = constant	R_{thJA}	45	K/W

Electrical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Part	Symbol	Min	Тур.	Max	Unit
Forward voltage	I _F = 1 A		V_{F}			2.5	V
	I _F = 1 A, T _j = 175 °C		V _F			1.3	V
Reverse current	$V_R = V_{RRM}$		I _R			5	μΑ
	$V_R = V_{RRM}, T_j = 150 ^{\circ}C$		I _R			100	μΑ
Reverse breakdown voltage	I _R = 100 μA	BYV26A	$V_{(BR)R}$	300			V
		BYV26B	V _{(BR)R}	500			V
		BYV26C	V _{(BR)R}	700			V
		BYV26D	$V_{(BR)R}$	900			V
		BYV26E	V _{(BR)R}	1100			V
Reverse recovery time	$I_F = 0.5 \text{ A}, I_R = 1 \text{ A}, I_R = 0.25 \text{ A}$	BYV26A- BYV26C	t _{rr}			30	ns
		BYV26D- BYV26E	t _{rr}			75	ns

Typical Characteristics (T_{amb} = 25 °C unless otherwise specified)

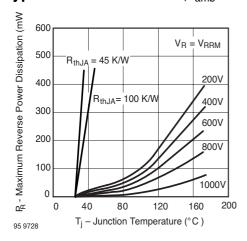


Figure 1. Max. Reverse Power Dissipation vs. Junction Temperature

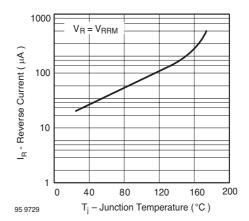


Figure 2. Max. Reverse Current vs. Junction Temperature

Vishay Semiconductors

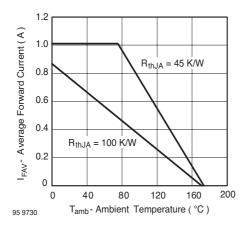


Figure 3. Max. Average Forward Current vs. Ambient Temperature



Figure 5. Diode Capacitance vs. Reverse Voltage

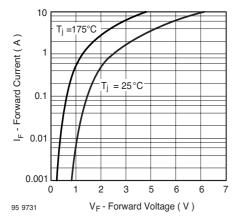


Figure 4. Max. Forward Current vs. Forward Voltage

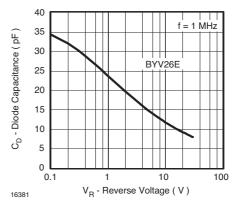
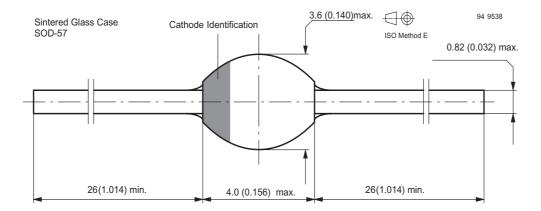



Figure 6. Diode Capacitance vs. Reverse Voltage

Package Dimensions in mm (Inches)

BYV26

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.