

MH 249 CMOS High Sensitivity Omni-polar Hall Switch

MH 249 Hall-effect sensor is a temperature stable, stress-resistant switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

The MH 249 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and a short circuit protected open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of omni-polar magnetic fields for operation.

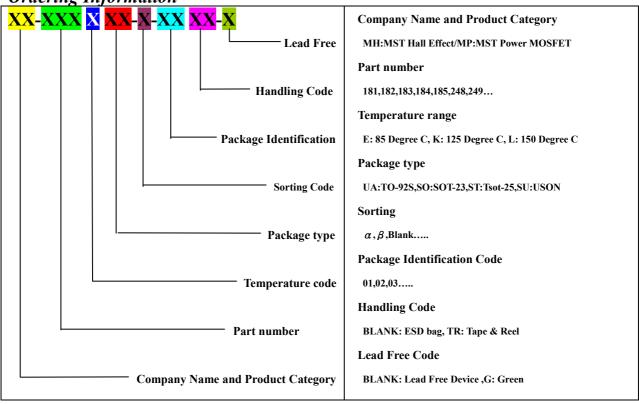
The MH 249 is rated for operation between the ambient temperatures –40°C and + 85°C for the E temperature range. The package style available provide magnetically optimized solutions for most applications. Package SO is an SOT-23, a miniature low-profile surface-mount package.

The package type is in a lead (Pb)-free version was verified by third party Lab.

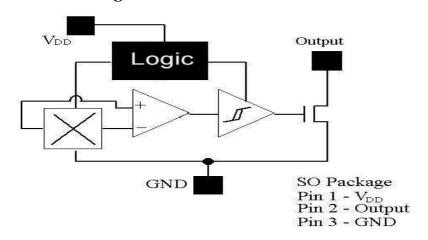
Features and Benefits

- CMOS Hall IC Technology
- Solid-State Reliability much better than reed switch
- Omni polar output switches with absolute value of North or South pole from magnet
- Operation down to 2.5V
- High Sensitivity for reed switch replacement
- Small Size in Sot 23 package

Applications


- Solid state switch
- Lid close sensor for power supply devices
- Magnet proximity sensor for reed switch replacement in high duty cycle applications.
- Safety Key
- Revolution counter

021508 Page 1 of 7 Rev. 007


MH 249 CMOS High Sensitivity Omni-polar Hall Switch

Ordering Information

Part No.	Temperature Suffix	Package Type	Package Identification
249	E (-40°C to $+85$ °C)	SO (SOT-23)	05

Functional Diagram

Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a $100\,\Omega$ resistor in series with V_{DD} is recommended.

Absolute Maximum Ratings

ottite ministration in interes	
Supply Voltage (Operating), V _{DD}	5V
Supply Current (Fault), I _{DD}	3mA
Output Voltage, V _{OUT}	5V
Output Current (Fault), I _{OUT}	25mA
Operating Temperature Range, T _A	-40°C to +85°C
Storage Temperature Range, T _S	-55°C to +150°C

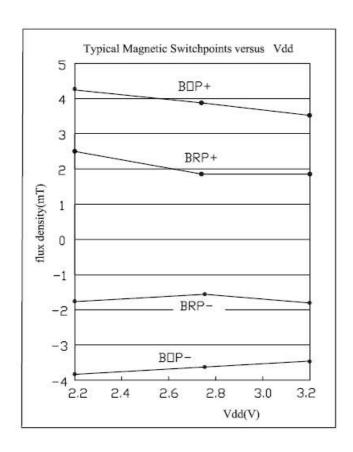
Electrical Specifications

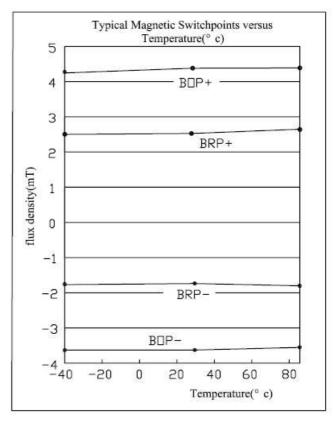
DC operating parameters: $T_A = 25^{\circ}C$, $V_{DD}=3V_{DC}$ (unless otherwise specified).

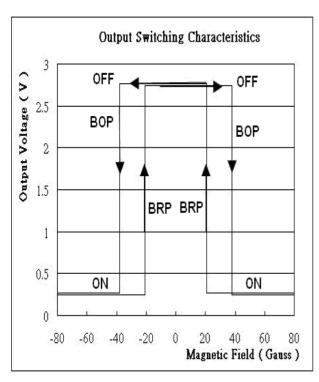
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Supply Voltage	V_{DD}	Operating	2.5		5.0	V
Supply Current	I_{DD}	Average		1.5		mA
Output Current	I _{OUT}				10	mA
Saturation Voltage	V_{SAT}	$I_{OUT} = 1 \text{mA}$			0.4	V

Magnetic Specifications

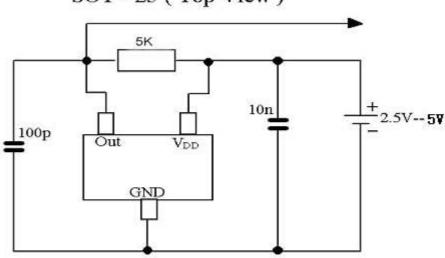
DC operating parameters: $T_A = 25^{\circ}C$, $V_{DD}=3V_{DC}$ (unless otherwise specified).


Parameter	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Operating	$\mathrm{B}_{\mathrm{OPS}}$	South pole to branded side, B > BOP, Vout On	0.6		6.0	mТ
Point	B_{OPN}	North pole to branded side, B > BOP, Vout On	-6.0		-0.6	mТ
Release	$\mathrm{B}_{\mathrm{RPS}}$	South pole to branded side, B < BRP, Vout Off	0.5		5.9	mT
Point	B_{RPN}	North pole to branded side, B < BRP, Vout Off	-5.9		-0.5	mТ
Hysteresis	$\mathrm{B}_{\mathrm{HYS}}$	BOPx - BRPx		0.7		mT


Note: 1 mT = 10 Gauss.


021508 Page 3 of 7 Rev. 007

Performance Graphs

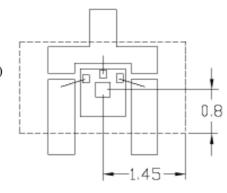

Installation Comments

Observe temperature limits during wave soldering.

Typical Application

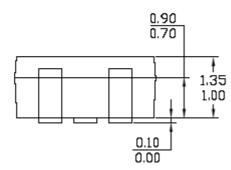
SOT - 23 (Top View)

SOT-23 Package Physical Characteristics and sensor location

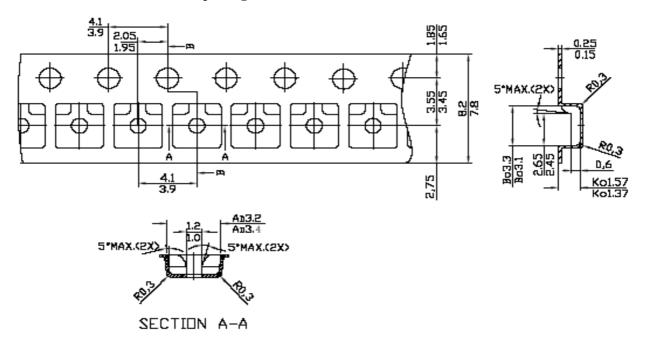

MH 249 SO-05 Package

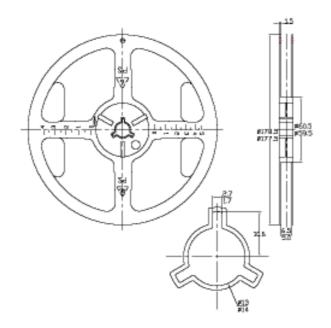
(Top View)

0.50 0.35 3 3.0 1.80 2.6 1.50 2 2.10 1.70 3.10 2.70


NOTES:

- 1. PINOUT (See Top View at left:)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - **GND** Pin 3
- 2. Controlling dimension: mm;
- 3. Lead thickness after solder plating will be 0.254mm maximum.


SOT-23 Hall Plate / Chip Location


(Bottom view)

Tape On Reel Dimension for Sot 23 package

NOTES:

- 1. Material: Conductive polystyrene;
- 2. DIM in mm;
- 3. 10 sprocket hole pitch cumulative tolerance ± 0.2 ;
- 4. Camber not to exceed 1mm in 100mm;
- 5. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole;
- 6. (SR OHM/SQ) Means surface electric resistivity of the carrier tape.

021508 Page 6 of 7 Rev. 007

MH 249 CMOS High Sensitivity Omni-polar Hall Switch