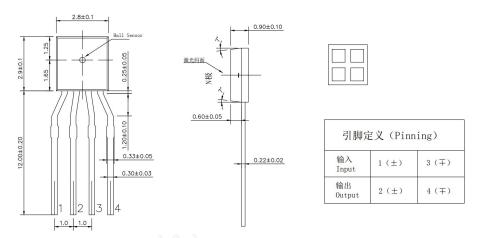


MG910 GaAs Hall Element


Linear GaAs Hall Element

Excellent Thermal Characteristics

Thin-type SIP Package

Shipped in Bulk by Pack (500pcs devices per pack)

Dimensional Drawing (Unit: mm)

Absolute Maximum Rating

Operating Temperature Range $-40^{\circ}\text{C} \sim 125^{\circ}\text{C}$ Storage Temperature Range $-40^{\circ}\text{C} \sim 150^{\circ}\text{C}$ Maximum Input Current I_{cmax} 13mA

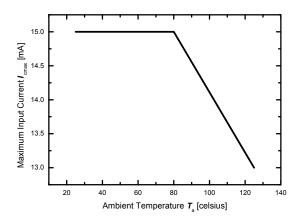


Figure 1. Maximum input current Icmax

Copy Right Reserved JZWI-DS-005 Version 4.1

Electrical Characteristics (RT=25°C)

Item Symbol Test Condi. Min. Тур. Max. Unit **B** = 50mT, **I**_C=5mA Hall Voltage $V_{\rm H}$ 36 45 54 mV $T_a = RT$ B = 0mT, $I_C = 0.1mA$ Input/Output Resist. 650 750 850 Ω **R**in/out $T_a = RT$ B = 0mT, $I_C = 5mA$ Offset Voltage -5 V_{os} +5 mV $T_a = RT$ $B = 50 \text{mT}, I_{C} = 5 \text{mA},$ Temp. Coeffi. of VH 0.06 %/°C $|\alpha V_{H}|$ T_a = 25°C ~ 125°C B = 0mT, $I_C = 0.1mA$, %/°C Temp. Coeffi. of Rin αR_{in} 0.3 $T_a = 25^{\circ}C \sim 125^{\circ}C$ **B** = 0.1 - 0.5T, **I**_C =5mA Linearity of V_H ΔK -2 +2 % $T_a = RT$

Table 1. Electrical Characteristics of MG910.

Note:

1.
$$V_{\rm H} = V_{\rm H-M} - V_{\rm os}$$

In which $\emph{V}_{\text{H-M}}$ is the Output Hall Voltage, \emph{V}_{H} is the Hall Voltage and \emph{V}_{os} is the offset Voltage

under the identical electrical stimuli.

2.
$$\alpha V_{\rm H} = \frac{1}{v_{\rm H} (T_{a1})} \times \frac{v_{\rm H} (T_{a2}) - v_{\rm H} (T_{a1})}{T_{a2} - T_{a1}} \times 100$$

$$T_{a1} = 25$$
°C, $T_{a2} = 125$ °C

3.
$$\alpha R_{\text{in}} = \frac{1}{R_{\text{in}} (T_{a1})} \times \frac{R_{\text{in}} (T_{a2}) - R_{\text{in}} (T_{a1})}{T_{a2} - T_{a1}} \times 100$$

$$T_{a1} = 25$$
°C, $T_{a2} = 125$ °C

4.
$$\Delta K = \frac{K(B_1) - K(B_2)}{\frac{K(B_1) + K(B_2)}{2}} \times 100$$
 $K = \frac{V_H}{I_c \times B}$

$$B_1 = 0.5 \text{ T}, \quad B_2 = 0.1 \text{ T}$$

Characteristic Curves

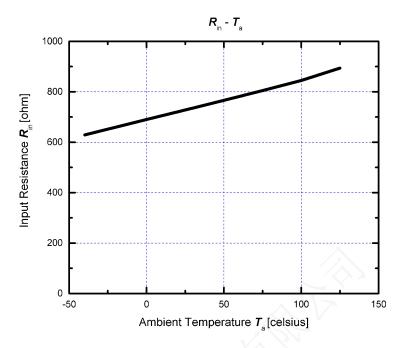


Figure 2. Input resistance R_{in} as a function of ambient temperature T_{a}

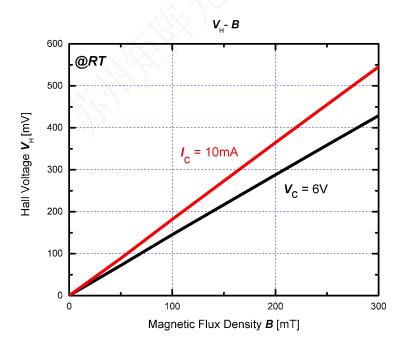


Figure 3. Hall voltage V_H as a function of magnetic flux density B

Copy Right Reserved

JZWI-DS-005 Version 4.1

Matrixenta Co. Ltd in the experience of the trademarks used in this desument, which has the exclusive right to prevent

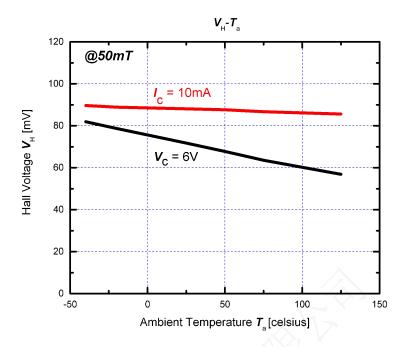


Figure 4. Hall voltage V_H as a function of ambient temperature T_a

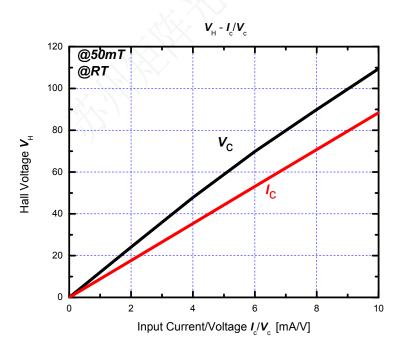


Figure 5. Hall voltage V_H as a function of electrical stimuli I_c/V_c

Copy Right Reserved JZWI-DS-005 Version 4.1 Matrixopto.Co.,Ltd is the owner of the trademarks used in this document, which has the exclusive right to prevent

Reliability Test Terms

Table 2. Reliability Test Terms, Conditions and Duration.

No.	Terms	Conditions	Duration
1	High Temperature Storage (HTS)	[JEITA EIAJ ED-4701] Ta =150 (0 ~ +10) °C	1000 hrs
2	Heat Cycle (HC)	[JEITA EIAJ ED-4701] $T_a = -55^{\circ}\text{C} \sim 150 ^{\circ}\text{C}$ high temp normal temp low temp. $30 \text{min} - 5 \text{min} - 30 \text{min}$	50 cycles
3	Temp. Humidity Storage (THS)	【JEITA EIAJ ED-4701】 T _a =85±3 °C , R _H =85±5 %	1000 hrs
4	Resist. to Hand Soldering Heat (RHSH)	[JEITA EIAJ ED-4701] Dipped in the 300±5 °C solder up to the 1 mm part from the body	5 sec
5	High Temp. Operating (HTO)	$T_{\rm a}$ =125 °C , $V_{\rm c}$ =7.5V	1000 hrs

Criteria:

- Variation of Hall Voltage $V_{\rm H}$ and input/output resistances $R_{\rm in/out}$ are less than 20%.
- Variation of offset voltage $V_{\rm os}$ is less than ±16mV.
- Other parameters in Table 1. are still within their ranges stated in Table 1.

Matrix Opto. Co., Ltd -MG910 GaAs Hall Element-

Soldering Conditions

The following conditions should be preserved. Solder ability should be checked by yourself, because it is depend on solder paste material and other parameters.

Material of solder flux

- Use the resin based flux and refrain from using organic or inorganic acid based and water-soluble one.

Cleansing of solder flux conditions

- Use Ethanol or Isopropyl alcohol as cleansing material.
- Process temperature should be 50 °C or less.
- Duration should be 5 minutes or less.

Hand soldering conditions

- Apart from the mold resin more than 1mm.
- Solder at temperature 300 °C for less than 5s.

Wave soldering conditions

- Temperature in Pre-heating zone should be lower than 150°C.
- Temperature in Soldering zone should be lower than 280°C.

Matrix Opto. Co., Ltd -MG910 GaAs Hall Element-

Precautions for ESD

This product is the device that is sensitive to ESD (Electrostatic Discharge). Handling Hall Elements with the ESD-Caution mark under the environment in which

- Static electrical charge is unlikely to arise (Ex: Relative Humidity over 40%RH).
- Wearing the anti-static suit and wristband when handling the devices.
- Implementing measures against ESD as for containers that directly touch the devices.

Precautions for Storage

- Products should be stored at an appropriate temperature and humidity (5°C to 35°C, 40%RH to 60%RH) after the unsealing of the MBB. Keeping products away from chlorine and corrosive gas.
- For storage longer than 2 years

Products are sealed in MBB with a desiccant. It is recommended to store in nitrogen atmosphere with MBB sealed. Oxygen and H₂O of atmosphere oxidizes leads of products and lead solder ability get worse.

Precautions for Safety

- Do not alter the form of this product into a gas, powder or liquid through burning, crushing or chemical processing.
- Observe laws and company regulations when discarding this product.