

MW601 InSb Hall Element

Ultra High-sensitivity InSb Hall element

Classic SOT Package

Shipped in packet-tape reel (3,000pcs per reel)

Dimensional Drawing (Unit: mm)

2 (±)

Output

4 (∓)

Absolute Maximum Rating

10°±5°

Operating Temperature Range $-40^{\circ}\text{C} \sim 125^{\circ}\text{C}$ Storage Temperature Range $-55^{\circ}\text{C} \sim 150^{\circ}\text{C}$ Maximum Input Current J_{cmax} 20mA Maximum Input Voltage V_{cmax} 2V

Figure 1. 1 Maximum input current Icmax

Copy Right Reserved

JZWI-DS-007 Version 4.1

Figure 1. 2 Maximum input Voltage V_{cmax}

Electrical Characteristics (RT=25°C)

Table 1. Electrical characteristics of Mirror.						
Item	Symbol	Test Condi.	Min.	Тур.	Max.	Unit
Hall Voltage	$V_{\! o}$	\boldsymbol{B} = 50mT, \boldsymbol{V}_{C} =1V \boldsymbol{T}_{a} = RT	168		516	mV
Input Resistance	R in	$B = 0mT, I_C = 0.1mA$ $T_a = RT$	240		550	Ω
Output Resistance	R out	$B = 0mT, I_C = 0.1mA$ $T_a = RT$	240		550	Ω
Offset Voltage	$V_{ m os}$	\boldsymbol{B} = 0mT, \boldsymbol{V}_C = 1V \boldsymbol{T}_a = RT	-5		+5	mV
Temp. Coeffi. of V_{H}	αV_H	$B = 50$ mT, $I_C = 5$ mA, $T_a = 0$ °C ~ 40°C		-1.8		%/°C
Temp. Coeffi. of $R_{\rm in}$	α R in	$B = 0mT$, $I_C = 0.1mA$, $T_a = 0^{\circ}C \sim 40^{\circ}C$		-1.8		%/°C

Table 1. Electrical Characteristics of MW601.

Note:

1. $V_{\rm H} = V_{\rm H-M} - V_{\rm os}$

In which $V_{\text{H-M}}$ is the Output Hall Voltage, V_{H} is the Hall Voltage and V_{os} is the offset Voltage under the identical electrical stimuli.

2.
$$\alpha V_H = \frac{1}{V_H(T_1)} \times \frac{V_H(T_3) - V_H(T_2)}{(T_3 - T_2)} \times 100$$

3.
$$\alpha R_{in} = \frac{1}{R_{in}(T_1)} \times \frac{R_{in}(T_3) - R_{in}(T_2)}{(T_3 - T_2)} \times 100$$

$$T_1 = 20^{\circ}\text{C}, \qquad T_2 = 0^{\circ}\text{C}, \qquad T_3 = 40^{\circ}\text{C}$$

Classification of Output Hall Voltage (V_H)

Table 2. Classification of Hall Voltage

Table 2. Classification of than Tollage			
Rank	V _H [mV]	Conditions	
С	168 ~ 204		
D	196 ~ 236		
E	228 ~ 274		
F	266 ~ 320	P_F0mT_ I/ _1\/	
G	310 ~ 370	B=50mT, V _C =1V	
Н	360 ~ 415		
I	405 ~ 465		
J	454 ~ 516		

Characteristic Curves

Figure 2. Input resistance R_{in} as a function of ambient temperature $T_{a.}$

Copy Right Reserved JZWI-DS-007 Version 4.1 Matrixopto.Co.,Ltd is the owner of the trademarks used in this document, which has the exclusive right to prevent

Figure 3. Hall voltage V_H as a function of magnetic flux density B.

Figure 4. Hall voltage $\emph{\textbf{V}}_{H}$ as a function of ambient temperature $\emph{\textbf{T}}_{a.}$

Figure 5. Hall voltage \emph{V}_{H} as a function of electrical stimuli $\emph{I}_{c}/\emph{V}_{c}$.

Figure 6. Offset voltage V_{os} as a function of electrical stimuli I_c/V_c .

Reliability Test Terms

 Table 2. Reliability Test Terms, Conditions and Duration.

No.	Terms	Conditions	Duration
1	High Temperature Storage (HTS)	[JEITA EIAJ ED-4701] $T_a = 150 (0 \sim +10) ^{\circ}C$	1000 hrs
2	Heat Cycle (HC)	[JEITA EIAJ ED-4701] $T_a = -55^{\circ}\text{C} \sim 150^{\circ}\text{C}$ high temp normal temp low temp. $30 \text{ min } -5 \text{ min } -30 \text{ min}$	30 cycles
3	Temp. Humidity Storage (THS)	[JEITA EIAJ ED-4701] $T_a = 85 \pm 3 ^{\circ}\text{C}$, $R_H = 85 \pm 5 ^{\circ}\text{M}$	1000 hrs
4	Reflow Soldering (RS)	【JEITA EIAJ ED-4701】 260±5 ℃	10 sec
5	High Temp. Operating (HTO)	$T_{\rm a}$ =125 °C , $V_{\rm c}$ =1V	1000 hrs

Criteria:

- Variation of Hall Voltage $\it V_{\rm H}$ and input/output resistances $\it R_{\rm in/out}$ are less than 20%.
- Variation of offset voltage $\ensuremath{\emph{V}}_{os}$ is less than $\pm 16 \ensuremath{\text{mV}}.$
- Other parameters in Table 1. are still within their ranges stated in Table 1.

Matrix Opto. Co., Ltd -MW601 InSb Hall Element-

Soldering Conditions

The following conditions should be preserved. Solder ability should be checked by yourself, because it is depend on solder paste material and other parameters.

Material of solder flux

- Use the resin based flux and refrain from using organic or inorganic acid based and water-soluble one.

Cleansing of solder flux conditions

- Use Ethanol or Isopropyl alcohol as cleansing material.
- Process temperature should be 50 °C or less.
- Duration should be 5 minutes or less.

Hand soldering conditions

- Apart from the mold resin more than 1mm.
- Solder at temperature 300 °C for less than 5s.

Wave soldering conditions

- Temperature in Pre-heating zone should be lower than 150°C.
- Temperature in Soldering zone should be lower than 270°C.

Precautions for ESD

This product is the device that is sensitive to ESD (Electrostatic Discharge). Handling Hall Elements with the ESD-Caution mark under the environment in which

- Static electrical charge is unlikely to arise (Ex: Relative Humidity over 40%RH).
- Wearing the anti-static suit and wristband when handling the devices.
- Implementing measures against ESD as for containers that directly touch the devices.

Precautions for Storage

- Products should be stored at an appropriate temperature and humidity (5°C to 35°C, 40%RH to 60%RH) after the unsealing of the MBB. Keeping products away from chlorine and corrosive gas.
- For storage longer than 2 years

Products are sealed in MBB with a desiccant. It is recommended to store in nitrogen atmosphere with MBB sealed. Oxygen and H_2O of atmosphere oxidizes leads of products and lead solder ability get worse

Precautions for Safety

- Do not alter the form of this product into a gas, powder or liquid through burning, crushing or chemical processing.
- Observe laws and company regulations when discarding this product.

文件履历表

版本	日期	描述
1.0	2021. 02. 06	初始版本发行
2.0	2021. 07. 16	引脚顺序由原先可变化脚序变为固定顺时针脚序

Matrix Opto. Co., Ltd -MW601 InSb Hall Element-

3.0	2022. 02. 28	引脚顺序定义变更,顺时针变成逆时针。
3. 1	2022. 04. 21	修订了工作温度和存储温度
3. 2	2022. 11. 01	修订特性图点位缺失及极限电流工作范围图,增 大至125℃。
4.0	2023. 06. 06	POD图纸变更,由有肩宽引脚变更为无肩宽引脚
4. 1	2023. 09. 13	增加极限电压和对应曲线,调整电阻温度曲线, 调整Logo图标