- 产品概述
- 技术参数
- 功能框图
- 数据表
产品概述:
自从有了交流异步电动机,人们就不断研究它的起动方式。经过七、八十年的更新换代,到今天已经发明了几十种起动方法。每一次技术的更新都代表了人类对新科学技术的探索和进步,就如同生物细胞新陈代谢一样,不断更新自己,保障自己肌体的健康与活力。2 低压电动机起动方式的选择
2.1 gb50055-93中的规定
在《通用用电设备配电设备设计规范》gb50055-93中规定:
(1) 电动机起动时,其端子电压应能保证机械要求的起动转矩,且在配电系统中引起的电压波动不应妨碍其他用电设备的工作;
(2) 交流电动机起动时,配电母线上的电压应符合下列规定:
在一般情况下,电动机频繁起动时,不宜低于额定电压的90%;电动机不频繁起动时,不宜低于额定电压的85%;
配电母线上未接照明或其他对电压波动较敏感的负荷,且电动机不频繁起动时,不应低压额定电压的80%;
配电母线上未接其他用电设备时,可按保证电动机起动转矩的条件决定;对于低压电动机,尚可保证接触器线圈的电压不低于释放电压。
(3) 笼型电动机和同步电动机起动方式的选择,应符合下列规定:
当符合下列条件时,电动机应全压起动:
电动机起动时,配电母线的电压符合2款规定;
机械能承受电动机全电压起动时的冲击转矩;
制造厂对电动机的起动方式无特殊规定。
当不符合全压起动的条件时,电动机宜降压起动,或选用其他适当的起动方式。
当有调速要求时,电动机的起动方式应与调速方式相配合。
2.2 jgj/t 16-92中的规定
以上是国家标准和行业标准对电动机起动的要求。设计人员最容易考虑到的是电气参数,而容易忽略的是“机械能承受电动机全电压起动时的冲击转矩”。这条规定的含义:一是电动机全压起动时的冲击转矩不能造成机械设备的可靠性满足不了要求;二是要考虑由于全压起动时的冲击转矩使得机械设备寿命的降低或故障率的增加而带来的损失高于增加降压起动设备带来的投资。
如在皮带运输机中的应用中,造成皮带损坏的原因是皮带的运行磨损和起动瞬间皮带与物料的磨损,再就是起动瞬间对皮带的拉松。由于皮带价格比软起动器还要高,所以一般15kw以上的皮带机应采用软起动相对于全压起动对皮带造成的损坏更为经济,同样算法,45kw以上的水泵或风机采用软起动更经济。再加上有色金属价格的上涨,软起动器的成本已经低于自耦变压器的成本。尤其现在软起动器技术发展到今天,由于良好的起动效果与经济性几乎全部占领了降压起动的场合。
2005年tjnr1000型在线运行微功耗软起动器的产生更是给电动机的起动方式带来了一次革命,它不需要加旁路接触器,使得系统成本大大降低,而且可靠性高于接触器,尤其大功率型号的价格已经和进口的接触器相差无几,而能耗比接触器节省60%以上,使得运行更经济,对于改善电动机的起动起到了更好的促进作用。
3 降压起动器
3.1 自耦变压起动器
自耦变压起动器是利用自耦变压器的降压原理来实现对电动机绕组电压的降压,如图1所示。在过去的几十年里人们多数采用了此种起动方法,标准的起动电动机用的自耦变压器设有两个抽头,一个是80%的额定电压,一个是65%的额定电压,人们常用的是65%额定电压的抽头。它的起动转矩是常压状态下的0.4225倍,起动转矩比“y-△”起动器大,所以此种降压起动方式应用较多。缺点是电压有级跳跃,起动电流有跳跃,电动机的转矩有跳跃。
图1 自耦变压起动原理图
3.2 “y/△”起动器
图2 “y/△”起动原理图
“y/△”起动器是利用“相-线电压变化”的原理来实现对电动机绕组电压的降压,如图2所示。在过去的几十年里,也有相当数量采用了此种起动方法,它是用三只接触器来实现对电动机的绕组电压由线电压变为相电压。它的起动转矩是常压状态下的1/3倍,起动转矩比自耦变压起动器小,所以此种降压起动方式应用较少于自耦变压起动器。缺点是电压有级跳跃,起动电流有跳跃,电动机的转矩有跳跃。它和自耦变压起动器相比造价正好节省一台自耦变压器的价格,因为“y/△”起动器到电动机需要六根动力接线,所以在系统造价方面不一定节省。它主要用在对起动转矩要求不高且起动器到电动机的供电距离较近的场合。
3.3 磁控型软起动器
图3 磁控型软起动器原理图
3.4 电子软起动器
图4 在线运行型软启动器 图5 旁路型软起动器 图6 内置旁路型软起动器
电子软起动器是上个世纪70年代由美国ab公司最新推出来,后来世界各大电气公司很快推出,但他们都是晶闸管在线运行,如图4所示,其优点是对电动机的起动控制与保护达到智能化,电路简单。在使用方面存在体积过大,重量过重(例如200kw的软起动器已重达56kg),造价昂贵,功耗太大(相当于电动机容量的1.5%左右),造成发热太大,热量难以排除的问题,而且谐波大,所以在使用上受到很大限制。
为了克服在线运行软起动器的缺点,到上世纪末国内厂家开始研制生产旁路型电子软起动器,如图5所示,在1998年国家颁布软起动器标准:“半导体电动机控制器标准”gb14048.6-1998。2000年笔者在全国范围内进行软起动起应用讲座,推广使用旁路型软起动器,到2001年各设计院开始设计选用旁路型软起动器,到了2002年90%的工程设计中均选用旁路型软起动器,很少选用自耦变压或“y/△”起动器。但是,旁路型软起动器也是存在缺点,如:
(1) 电路复杂化,系统可靠性降低;
(2) 强大的智能控制器不能充分利用,有的不能对电动机保护;
(3) 增加了成套装置的体积和成本;
(4) 增加了维护与检修的难度。
为了克服旁路型软起动器的缺点,在2003年各电气公司纷纷开发内置旁路型软起动器。现在天津诺尔哈顿、美国ab、西门子等三家已经推出了其全系列的内置旁路型软起动器,如图6所示,并且现在也有很多厂家正在部分系列推出内置旁路型软起动器。它的优点是既回避了晶闸管在线运行的缺点,又回避了旁路型的缺点。它体积小、重量轻、造价低、控制功能强大,是目前阶段最先进的软起动器,也最有实际应用价值。
3.5 其它软起动方式
图7 液体电阻降压起动方案之一 图8 液体电阻降压起动方案之二
液体电阻起动器的名称比较多,但其基本原理都是一样的,它属串电阻起动,适用于绕线型交流电动机起动。而对于鼠笼型电动机串在定子绕组侧,是不合适的,在起动过程中,电阻会造成大量的电能浪费,另外大量的热量也难以处理。而且该产品不符合国家政策未列入国家标准,所以无法得到“ccc”认证,不宜推广使用。


收藏本站
当前位置:



简要描述:
打印当前页
免费咨询:0755-83031813
发邮件给我们:sumzi@sumzi.com








